Does Software Engineering Research have Impact on Software Engineering Practice?

A Brief Introduction to the Impact Project

Alexander L. Wolf Imperial College London

Assumptions

There is a software engineering practice

- engineers apply techniques, use tools, and follow processes

There <u>is</u> a body of work that can be identified as software engineering research

- both academic and industrial

There <u>is</u> skepticism about the impact of research on practice

 witness: the relatively low level of academic and industrial research funding vis-à-vis the increasingly critical role played by the practice

From where does technology come?

Facile answers are misleading

It comes from...

- Sun, Microsoft, IBM, Google, "the Web", ...

Yes, but!

- from where did they get it? and how?

It comes from...

 Dr. X, who published a seminal research paper and produced a popular prototype

Yes, but!

- we didn't read the paper
- it was only a prototype, not engineered/licensed for industrial use

It comes from...

- being "in the air", everybody knows it

Yes, but!

- how did it get there? who nurtured it?

Ideas have many parents...

Researchers Scientific and technical communities Technology transfer agents Students with new degrees New hires with different perspectives Early adopters Commercializers

... and their contributions differ

Initial conceptualization of idea Evangelism Prototype demonstration Public promulgation Nurturing by community activities Education, training, and indoctrination Product commercialization

Why should we care?

Facile answers are misleading

Some technology is not very good

- why are we stuck with it?
- why is it not better?

Some technology seems useful

- how can we get more of it?
- how can we speed its appearance?
- are there approaches that need to be strengthened/nurtured, despite their slow adoption?

How do we evaluate the contributions?

Facile answers are misleading

Ideally

- qualitatively
- quantitatively

But a challenging task

- different parties have different motivations
- apportioning contributions is difficult
- long timescales attenuate measurements and memories

CiP: Pressure to measure in the UK

UK Government is seeking accountability

 demonstrating economic impact of tax-payer investment in basic research and improving exploitation of research outputs

2006 DTI report on "Increasing the Economic Impact of the Research Councils"

- provides several recommendations on how to consider economic impact in funding decisions
- example: an individual competent in the economic impact of research should be accommodated on each review panel

But measuring is easier said than done

2006 EPSRC report on "International Review of ICT Research in the UK"

- panel noted the difficulty in conducting macroeconomic analysis of ICT commercial impact

2007 Russell Group response to DTI report[‡]

- "There is no evidence to date of any rigorous way of measuring economic impact other than in the very broadest of terms and outputs."

Goals of the Impact Project

Scholarly, objective, case-based evaluation Deliverables

- peer-reviewed papers
- presentation materials and outreach activities
- expertise

Community building

Prospective for future research investment Lessons learned for "successful" research

- but only with respect to transfer into practice (there are other measures of research success)

Administration

An initiative of ACM SIGSOFT

- volunteers mostly pay their own way
- modest funding from US NSF, UK IEE, and various agencies in Italy, UK, Germany, and Japan

International executive committee

Leon Osterweil

Carlo Ghezzi

Jeff Kramer

Alexander Wolf

Method

Form teams around practices

- important and widespread
 - » examples: configuration management, programming languages, middleware, assertions, walkthroughs, ...
- recruit volunteers, including researchers (academic and industrial) and practitioners

Start from practice and trace backward

Use accepted historical tools

qualify conclusions by solidity of evidence; use references, oral histories, ...
 Michael Mahoney Professor of (Science) History

A quick tour of two completed reports

Software configuration management

- first report to emerge from the project
- ACM TOSEM, October 2005

Middleware technology

- latest report to emerge from the project
- ACM TOSEM, to appear October 2008

Software configuration management

Investigation into the research origins of successful SCM vendor products (ca. 2003)

- version control
- product models
- change control

Lead authors

Jacky Estublier David Leblang

- composition/selection
- build management
- workspace management

Other team members

- G. Clemm, IBM (ClearCase)
- R. Conradi, U. Trondheim
- A. van der Hoek, U. California
- W. Tichy, U. Karlsruhe (RCS)
- D. Wiborg-Weber, Telelogic (Continuus)

Is there a practice?

Practice measured by sales of vendor products

- Ovum: \$1B (1998), \$2B (2000), \$3.3B (2002)
 - » 25% mainframe
 - » 15%-20% workstations
 - » 5%-10% PC
- Gartner: \$6B (2003)

BTW: this ignores the "sales" of freeware and shareware

- examples: CVS, Subversion

Historical method

- 1. Examine characteristics/features of leading products in SCM market
 - 2. Assume products are used in practice
 - 3. Trace product characteristics/features back to research ideas and prototypes
 - 4. Make arguments for/against influence of research on practice via products

When was it introduced?

	Academic Research	Industrial Research	Industrial Product
1972		SCCS (Bell Labs)	
1976		Diff (Bell Labs)	
1977		Make (Bell Labs)	
1980	Variants, RCS (Purdue)	Change-sets (Xerox Parc)	
1982	Merging, and/or graph (Purdue)		
1983		Change-sets (Aide-de-Camp)	
1984	Selection (Grenoble)		
1985		System model (DS	SEE)
1988	Process support (Grenoble)		
1900	NSE Workspaces (Carnegie Mellon, Sun)		
1990		nDFS file system (Bell Labs)	
1994		Virtual file system and MultiSite (ClearCase)	
1996		Activities (Asgard, Bellcore)	
2000	WebDAV (California, Microsoft, ClearCase,)		

An argument: research/product timing

An argument: professional interaction

SCM research community organized regular workshops beginning in 1988

Product architects were present at all

- Cagan, Clemm, Dart, Leblang, Wiborg-Weber, ...
- Some presented work, while others simply attended and participated in discussion

The meetings put ideas "in the air", and helped to keep them there

The role of creativity: vendor's view

Vendors tend to consider that research impact is restricted to...

```
algorithms (e.g., differencing)

pieces of reusable code (e.g., RCS)
```

and not...

```
concepts (e.g., hierarchical workspaces)
architectures (e.g., peer-to-peer repositories)
```

which are often seen as "engineering common sense"

The role of creativity: researcher's view

Researchers tend to consider that... precedence concepts prototypes are sufficient as impact and ignore... efficiency usability reliability dismissing them as "engineering common

Both are right and both are wrong

A good idea is had more than once

Vendors have disincentives for distributing credit for ideas

Researchers have incentives for claiming credit for ideas

Research and productization both require engineering creativity

Middleware technology

Investigation into the research origins of successful middleware technology (ca. 2007)

- web services

- distributed object systems
- application servers message queues
- transaction monitors remote procedure call systems

Lead authors

Wolfgang Emmerich

Mikio Aoyama

Joe Sventek

Is there a practice?

Middleware License Market in 2005 [Gartner 2006]

Historical method

1. Seek sources

- market analysis reports
- professional articles
- technical reports
- standards documents
- minutes of standards meetings
- people movement
- PhD theses
- software
- interviews

2. Derive "impact trace graph"

The big picture of impact

Trace: Simple Object Access Protocol

Trace: Web Services Description Lang.

Trace: Business Process Execution Lang.

Trace: Transactions in App. Servers

Trace: Messaging in App. Servers

Trace: Dist. Objects in App. Servers

Trace: Distributed Objects in CORBA

Trace: Remote Procedure Calls

M/W: Some key findings/confirmations

Technology development is interdisciplinary

 often winds back and forth among disciplines

Technology maturation needs time

- 15-20 years between first publication of an idea and widespread availability in products

Technology transfer needs commitment

 people movement is most successful vehicle

PhD students are critical sources of ideas

- almost all impact traces lead back to PhD theses

Standards are critical enablers of ideas

 without widespread agreements on ideas there is no widespread adoption

Tech. development is interdisciplinary

Impact traces often cross CS disciplines

For middleware...

- software engineering
- networking
- programming languages
- distributed systems
- databases

Impact sometimes larger in area other than first publication

- e.g., message queues

Example: RPC IDLs

- infor. hiding [CACM 15(5), 1972]
- MIL [IEEE TSE SE-2(2), 1976]
- Mesa [ICSE-4, 1977]
- Cedar RPCs [ACM ToCS 2(1), 1984]
- Sun RPC [IETF RFC 1057, 1987]

Example: dist. transactions

- operating systems (Gray, 1976)
- nested transactions (Moss, 1981)
- concur. control (Bernstein, 1987)
- Arjuna (Dixon, 1989)
- OSF ODTP/XA (1991)
- CORBA CCS, OTS (1994)
- J2EE JTS, JTA (2001)

Technology maturation needs time

RPCs	Dist. Transactions	Dist. Objects/RMI	- 1970
idea of module interconnection languages			1000
research on			-1980
RPC systems	research on non-	basic research and prototypes (Argus,	
release of RPC into	standard transactions	Eden, Emerald)	
Apollo and Sun OSs	- <u></u>		- 1990
standardization by IETF and OSF	standardization by OSF and OMG	consolidation as "network objects"	
	widespread use in application servers	standardization through JCP	-2000
		widespread use in Java and .NET	2000

Technology transfer needs commitment

B. Nelson from CMU to Xerox PARC

- wrote definitive paper on RPCs with A. Birrel

B. Nelson and A. Birrel to DEC Research

 wrote Network Object paper providing the basis for Java RMI

A. Watson from APM to OMG

lead CORBA
 standardization

A. Herbert from Cambridge to APM

- devised ANSA

G. Dixon from NCL to Transarc

- wrote OMG CORBA OTS and CCS service specs
- J. Waldo from UMass, J. Sventek from APM to HP
 - wrote CORBA 1.0 spec
- J. Waldo from HP to Sun
 - wrote RMI spec

PhD students are critical sources

Remote procedure calls

- architecture and failure semantics: Nelson (CMU 1981)
- orphan detection:Panzieri (Newcastle 1985)

Distributed transactions

- nested transactions: Moss (MIT 1981)
- object transactions:Dixon (Newcastle 1987)

Distributed object models

- general object models: Snyder (MIT 1978)
- RMI object model: Hutchinson (UW 1987) and Bal (Vrije 1989)

Web services

- Scribe: Reid (CMU 1981)

Impact reports roadmap

???

Software testing

Software architecture

Reviews and walkthroughs

Runtime assertion checking

Middleware technology

Modern programming languages
Software configuration management

Preliminary project "meta" findings

- 1. SE research has had impact on SE practice
- 2. Lasting impact comes most readily from repeated and sustained interactions
- 3. Interplay can be difficult to determine precisely and communicate clearly
- 4. Substantially different mechanisms have been successful at causing impact
- 5. More benefit from nurturing many and varied ways than single approach to impact
- 6. Community needs support to maintain the nurturing environment

Further information and reading

Impact web site

- http://www.acm.org/sigsoft/impact/
- contains links to published reports on
 - » software configuration management (ACM TOSEM)
 - » modern programming languages (ACM TOSEM)
 - » middleware technology (ACM TOSEM)
 - » run-time assertion checking (ACM SIGSOFT SEN)

Overview article

- to appear in IEEE Computer, early 2008